
www.manaraa.com

13

Different Search Strategies on Encrypted Data

Compared

Richard Brinkman

University of Twente
The Netherlands

Summary. When private information is stored in databases that are under the
control of others, the only possible way to protect it, is to encrypt it before storing it.
In order to efficiently retrieve the data, a search mechanism is needed that still works
over the encrypted data. In this chapter an overview of several search strategies is
given. Some add meta-data to the database and do the searching only in the meta-
data, others search in the data itself or use secret sharing to solve the problem. Each
strategy has its own advantages and disadvantages.

13.1 Why Should We Search in Encrypted Data?

In a chapter about searching in encrypted data we should first ask ourselves
the questions:

• Why should we want to protect our data using encryption?
• Why not use access control?
• Why should we want to search in encrypted data?
• Why not decrypt the data first and then search in it?

Access control is a perfect way to protect your data as long as you trust the
access control enforcement. And exactly that condition often makes access
control simply impossible.

Consider a database on your friend’s computer. You store your data on
his computer because he has bought a brand new large-capacity hard drive.
Furthermore, he leaves his computer always on, so that you can access your
data from everywhere with an Internet connection. You trust your friend to
store your data and to make daily backups. However, your data may contain
some information you do not want your friend to read (for instance, letters to
your girlfriend). In this particular setting you cannot rely on the access control
of your friend’s database, because your friend has administrator privileges. He
can always circumvent the access control or simply turn it off.

Fortunately, you read a book about cryptography a few years ago, and de-
cide to encrypt all your sensitive information before storing it in the database.



www.manaraa.com

184 R. Brinkman

Now you can use your friend’s bandwidth and storage space without fearing
that he is reading your private data.

Happy as you are, you keep on going storing more and more information.
However, the retrieval of it gets harder and harder. In the situation before
you encrypted your data you were used to send a precise query to the server
and to retrieve only the information you needed. But in the current situation
you cannot make the selection on the server. So, for each query you have to
download the whole database and do the decryption and querying on your
own computer. Since you have a slow Internet connection, you get tired of
waiting for the download to finish. Of course, you can send your encryption
key to your friend’s database and ask it to do the decryption for you, but then
you end up in almost the same situation as you started with. If the database
can decrypt your data, your friend can read it.

Fortunately, there are mechanisms that solve the sketched problem. Some
of the techniques will be explained in the remainder of this chapter.

13.2 Solutions

This section gives some solutions to the problem stated in the previous section.
They all have one thing in common: the data are encrypted and stay encrypted
for the time it resides on the server. The goal is to prevent the server (and
everyone having access to it) from learning the data it is storing, the queries
that are asked and the answers it gives back.

13.2.1 Index-Based Approach

Relational databases use tables to store the information. Rows of the table
correspond to records and columns to fields. Often hidden fields or even com-
plete tables are added to act as an index. This index does not add information;
it is only used to speed up the search process. Hacıgümüş et al. [1, 2, 3] use the
same idea to solve the problem of searching in encrypted data. To illustrate
their approach we will use the example table shown in Table 13.1, which is
stored on the server as shown in Table 13.2.

The first column of the encrypted table contains the encryptions of whole
records. Thus etuple = E(id, name, salary), where E(·) is the encryption

Table 13.1. Plain text salary table

id name salary

23 Tom 70000

860 Mary 60000

320 John 50000

875 Jerry 5600

Table 13.2. Encrypted salary table

etuple idS nameS salaryS

010101011 . . . 4 28 10

000101101 . . . 2 5 10

010111010 . . . 8 7 2

110111101 . . . 2 7 1



www.manaraa.com

13 Different Search Strategies on Encrypted Data Compared 185

id
0 200 400 600 800 1600

4 8 9 3 2

name
A F K P U Z

6 7 5 28 11

salary
0 20k 40k 60k 80k 100k

1 6 2 10 3

Fig. 13.1. Partitioning of the id, name and salary fields.

function. The extra columns are used as an index, enabling the server to
prefilter records. The fields are named similar to the plain text labels, but
are annotated with the superscript S which stands for server or secure. The
values for these fields are calculated by using the partitioning functions drawn
as intervals in Fig. 13.1. The labels of the intervals are chosen randomly. For
example, consider John’s salary. It lies in the interval [40k, 60k〉. This interval
is mapped to the value two which is stored as the salaryS field of John’s
record. It is the client’s responsibility to keep these partitioning functions
secret.

Querying the data is performed in two steps. First, the server tries to give
an answer as accurately as it can. Second, the client decrypts this answer
and postprocesses it. For this two-stage approach it is essential that the client
splits a query Q into a server part QS (working on the index only) and a
client part QC (which postprocesses the answer retrieved from the server).
Several splittings are possible. The goal is to reduce the workload of the client
and the network traffic. In order to have a realistic query example, let us first
add a second table containing addresses to the database. The plain address

table is shown in Table 13.3. It is stored encrypted on the server as shown in
Table 13.4.

Table 13.3. Plain text address table

id street

23 4th avenue

860 Owl street 4

320 Downing street 10

875 Longstreet 100

Table 13.4. Encrypted address table

etuple idS streetS

110111100 . . . 4 5

110111110 . . . 2 2

000111010 . . . 8 6

001110110 . . . 2 3

As an example we choose the following SQL query:

SELECT street

FROM address, salary

WHERE address.id=salary.id AND salary<55000



www.manaraa.com

186 R. Brinkman

SQL is a descriptive query language. It does not dictate the database how

the result should be calculated (like a programming language does) only what

the result should be. The database has freedom in the sequence of opera-
tions e.g., selection (σ), projection (π), join (⋊⋉), etc. In this case the optimal
evaluation is the one drawn in Fig. 13.2.

address

salary

σsalary<55000

⋊⋉

address.id = salary.id

πstreet

Fig. 13.2. Optimal query evaluation on
uncrypted data

addressS

D

salaryS

D

σsalary<55000

⋊⋉

address.id = salary.id

πstreet

Fig. 13.3. Inefficient evaluation on en-
crypted data

The direct translation of the query tree to the encrypted domain is by
simply decrypting the tables first (operation D) and then continuing with the
standard evaluation (see Fig. 13.3). It clearly calculates the correct result but
misses our goal of reducing network bandwidth and client computation. The
operators should be pushed below the decryption operator D as much as pos-
sible. In Fig. 13.4 the selection on the salary is pushed below the decryption.
Notice that the selection σS

salaryS∈{1,6,2} also returns salaries between 55,000

and 60,000, so the client-side selection σsalary<55000 cannot be left out. Af-
ter the client selection is pulled above the join (not shown), the join can be
pushed below the decryption as shown in figure 13.5.

The original strategy as described in [2] has two drawbacks: it cannot
handle aggregate functions like SUM, COUNT, AVG, MIN and MAX very
well and frequency analysis attacks are possible.

In a follow-up paper [4] the authors extend the method described in this
section with privacy homomorphisms [5], allowing operations like addition and
multiplication to work on encrypted data directly without the need to decrypt
first.

The second drawback of the original method is dealt with by Damiani
et al. [6]. Instead of using an encrypted invertable index, they use a hash
function that is designed to have collisions. This way, an attacker has no
certainty that two records are equal when they have the same index. This
makes frequency analysis harder. As a down side, the efficiency drops when
the security increases.



www.manaraa.com

13 Different Search Strategies on Encrypted Data Compared 187

addressS

D

salaryS

σS
salaryS∈{1,6,2}

D

σsalary<55000

⋊⋉

address.id = salary.id

πstreet

Fig. 13.4. Selection pushed down

addressS

salaryS

σS
salaryS∈{1,6,2}

⋊⋉
S

addressS.idS = salaryS.idS

D

σsalary<55000 ∧ address.id=salary.id

πstreet

Fig. 13.5. Efficient evaluation on en-
crypted data

13.2.2 Search in the Encrypted Data

In contrast to the approach of Hacıgümüş et al, Song, Wagner and Perrig
[7] do not need extra meta-data. In their approach the search is done in the
encrypted data itself. They use a protocol that uses several encryption steps,
which will be explained in this section.

Using the protocols described below, a client (Alice) can store data on the
untrusted server (of Bob) and search in it, without revealing the plain text of
either the stored data, the query or the query result. The protocol consists of
three parts: storage, search and retrieval.

Storage

Before Alice can store information on Bob’s server she has to do some calcu-
lations. First of all she has to fragment the whole plain text W into several
fixed-sized words Wi. Each Wi has a fixed-length n. She also generates en-
cryption keys k′ and k′′ and a sequence of random numbers Si using a pseudo
random generator. Then she has, or calculates, the following for each block
Wi:

Wi plain-text block
k′′ encryption key
Xi = Ek′′ (Wi) = 〈Li, Ri〉 encrypted text block
k′ key for f
ki = fk′(Li) key for F
Si ith random number
Ti = 〈Si, Fki

(Si)〉 tuple used by search
Ci = Xi ⊕ Ti value to be stored (⊕ stands for xor)



www.manaraa.com

188 R. Brinkman

where E is an encryption function, Li and Ri are the left and right parts of
Xi and f and F are keyed hash functions:

E : key × {0, 1}n → {0, 1}n

f : key × {0, 1}n−m → key
F : key × {0, 1}n−m → {0, 1}m

The encrypted word Xi has the same block length as Wi (i.e. n). Li has
length n − m and Ri has length m. The parameters n and m may be chosen
freely (n > 0, 0 < m ≤ n

2 ). The value Ci can be sent to Bob for storage.
Alice may now forget the values Wi, Xi, Li, Ri, ki, Ti and Ci, but should still
remember k′, k′′ and Si (or the seed to regenerate Si).

Search

After the encrypted data is stored by Bob in the previous phase, Alice can
query Bob’s server. Alice provides Bob with an encrypted version of a plain-
text word Wj and asks him if and where Wj occurs in the original document.
Note that Alice does not have to know the position j. If Wj was a block in
the original data then 〈j, Cj〉 is returned. Alice has or calculates:

k′′ encryption key
k′ key for f
Wj plain-text block to search for
Xj = Ek′′ (Wj) = 〈Lj, Rj〉 encrypted block
kj = fk′(Lj) key for F

Then Alice sends the value of Xj and kj to Bob. Having Xj and kj Bob
is able to compute for each Cp:

Tp = Cp ⊕ Xj = 〈Sp, S
′
p〉

IF S′
p = Fkj

(Sp) THEN RETURN 〈p, Cp〉

If p = j then S′
p = Fkj

(Sp), otherwise S′
p is garbage. Note that all locations

with a correct Tp value are returned. However there is a small chance that T
satisfies T = 〈Sq, Fkj

(Sq)〉 but where Sq 6= Sp. Therefore, Alice should check
for each answer whether the correct random value is used or not.

Retrieval

Alice can also ask Bob for the cipher text Cp at any position p. Alice, knowing
k′, k′′ and Si (or the seed to generate it), can recalculate Wp by



www.manaraa.com

13 Different Search Strategies on Encrypted Data Compared 189

p desired location
Cp = 〈Cp,l, Cp,r〉 stored block
Sp random value
Xp,l = Cp,l ⊕ Sp left part of encrypted block
kp = fk′(Xp,l) key for F
Tp = 〈Sp, Fkp

(Sp)〉 check tuple
Xp = Cp ⊕ Tp encrypted block
Wp = Dk′′(Xp) plain text block

where D is the decryption function D : key × {0, 1}n → {0, 1}n such that
Dk′′(Ek′′ (Wi)) = Wi.

This is all Alice needs. She can store, find and read the text while Bob
cannot read anything of the plain text. The only information Bob gets from
Alice is Ci in the storage phase and Xj and kj in the search phase. Since Ci

and Xj are both encrypted with a key only known to Alice and kj is only
used to hash one particular random value, Bob does not learn anything about
the plain text. The only information Bob learns from a search query is the
location where an encrypted word is stored.

However, the protocol has two drawbacks:

• The splitting of the plain text into fixed-sized words is not natural, espe-
cially not for human languages.

• The search time complexity is linear in the length of the whole data. It
does not scale up to large databases.

Both drawbacks are solved by Brinkman et al. [8]. They use XML as a data
format and exploit its tree structure to get a logarithmic search complexity.

Waters et al. [9] use a similar technique, which is based on [7], to secure
audit logs. Audit logs contain detailed and probably sensitive information
about past execution. It should therefore be encrypted. Only when there is a
need to find something in the encrypted audit log, a trusted party can generate
a trapdoor for a specific keyword. Boneh et al. [10] use a different trapdoor
strategy to achieve the same goal.

13.2.3 Using Secret Sharing

A third solution to our problem uses secret sharing [11, 12]. In this context,
sharing a secret does not mean that several parties know the same secret.
In cryptography secret sharing means that a secret is split over several par-
ties such that no single party can retrieve the secret. The parties have to
collaborate in order to retrieve the secret.

Secret sharing can be very simple. To share, for instance, the secret value
5 over 3 parties a possible split can be 12, 4 and 26. To find the value back
all three parties should collaborate and sum their values modulo 37 (5 ≡
12 + 4 + 26 (mod 37)).

The database scheme described in this section uses the idea of secret shar-
ing to accomplish the task of storing data such that you need both the server



www.manaraa.com

190 R. Brinkman

and the client to collaborate in order to retrieve the data. Further require-
ments are:

• The server should not benefit from the collaboration. Its knowledge about
the data should not increase (much) during the collaboration.

• The data split should be unbalanced, meaning that the server share is
heavier (in terms of storage space) than the client share.

Encoding

A plain text XML document is being transformed into an encrypted database
by following the steps below. See Fig. 13.6 for the encoding of a concrete
example.

1. Define a function map : node → Fp, which maps the tag names of the
nodes to values of the finite field Fp, where p is a prime that is larger than
the total number of different tag names (Fig. 6(b)).

2. Transform the tree of tag names (Fig. 6(a)) into a tree of polynomi-
als (Fig. 6(d)) of the same structure where each node is transformed to
f(node) where function f : node → Fp[x]/(xp−1−1) is defined recursively:

f(node) =

{

x − map(node) if node is a leaf node
(x − map(node))

∏

d∈child(node) f(d) otherwise

Here child(node) returns all children of a node.
3. Split the resulting tree into a client (Fig. 6(e)) and a server tree (Fig. 6(f)).

Both trees have the same structure as the original one. The polynomials
of the client tree are generated by a pseudo-random generator. The poly-
nomials of the server tree are chosen such that the sum of a client node
and the corresponding server node equals the original polynomial.

4. Since the client tree is generated by a pseudo-random generator it suffices
to store the seed on the client. The client tree can be discarded. When
necessary, it can be regenerated using the pseudo-random generator and
the seed value.

Retrieval

It is simple to check whether a node n is stored somewhere in a subtree by
evaluating the polynomials of both the server and the client at map(n). If
the sum of these evaluations equals zero, this means that n can be found
somewhere in the subtree n. To find out whether n is the root node of this
subtree, you have to divide the unshared polynomial by the product of all its
direct children. The result will be a monomial (x − t) where t is the mapped
value of the node.

In a real query evaluation you start at the XML root node and walk
downwards until you encounter a dead branch. Whether you choose to traverse



www.manaraa.com

13 Different Search Strategies on Encrypted Data Compared 191

c

b

a b

c

a

(a) XML example

name value

a 2
b 1
c 3

(b)
Map-
ping
function

x − 3

(x − 1)(x − 3)

x − 2 x − 1

(x − 3)(x − 2)(x − 1)

(x − 1)2(x − 2)2(x − 3)2

(c) Unshared, unreduced en-
coding

f3(x) = x + 2

f2(x) = x2 + x + 3

f5(x) = x + 3 f6(x) = x + 4

f4(x) = x3 + 4x2 + x + 4

f1(x) = 2x3 + 3x2 + 2x + 3

(d) Unshared, reduced encoding

=

c3(x) = 3x2 + 2x + 1

c2(x) = x3 + 2x2 + 2

c5(x) = 3x3 + 2x2 + x c6(x) = 2x3 + x2 + 3x + 1

c4(x) = 2x3 + x + 2

c1(x) = 2x3 + x2 + 1

(e) Client encoding

+

s3(x) = 2x2 + 4x + 1

s2(x) = 4x3 + 4x2 + x + 1

s5(x) = 2x3 + 3x2 + 3 s6(x) = 3x3 + 4x2 + 3x + 3

s4(x) = 4x3 + 4x2 + 2

s1(x) = 2x2 + 2x + 2

(f) Server encoding

Fig. 13.6. The mapping function (b) maps each name of an input document (a) to
an integer. The XML document is first encoded to a tree of polynomials (c) before
it is reduced to the finite field F5[x]/(x4

− 1) (d) and split into a client (e) and a
server (f) part.



www.manaraa.com

192 R. Brinkman

the tree depth- or breadth-first, the strategy remains the same: try to find dead
branches as early as you can. Fortunately, each node contains information
about all the subnodes. Therefore, it is almost always the case that you find
dead branches (where the unshared evaluation return a nonzero value) before
reaching the leaves.

To illustrate the search process we will follow the execution run with the
example query //c/a. This XPath query should be read as: start at the root
node, go one or more steps down to all c nodes that have an a node as
child. The roman numbers in Fig. 13.7 correspond to the following sequence
of operations:

(i) We start the evaluation process at the root nodes of the server and the
client. In parallel, they can substitute the values in the root polynomials.
Both s1(map(c)) = s1(3) and s1(map(a)) = s1(2) should be evaluated,
but it does not matter in which order (analogously for c1(·)). To mislead
the server we choose to evaluate first the a nodes and then the c node,
although the query suggests otherwise.

(ii) Each time the server has substituted a value for x in one of its polynomials,
it sends the result to the client, which can add the server result to its own.
In this example f1(2) = c1(2)+s1(2) = 1+4 = 0, which means that either
the original root node was a or the root node has a descendant a.

(iii) The next task is to check that the root node is or contains c.
(iv) f1(3) = 0. Now we know that the root node contains both a and c, a

prerequisite of our query. Thus, we proceed one step down in the tree.
(v) The left child is checked for a.

(vi) This time f2(2) = 4 6= 0. Thus the left subtree does not contain an a

node. Apparently this is a dead branch. It is not even necessary to check
for a c node; the query //c/a can never hold in this branch. We can stop
evaluating it and backtrack to the right subtree.

(vii) In the right subtree we start checking for a c node.
(viii) Since f4(2) = 0, the right subtree seems promising.
(ix) Therefore we also check for an a node.
(x) The right tree still seems promising so we walk one level down.

(xi) Since the client knows the structure of the tree (if not, he can ask the
server for it), he knows that we have reached a leaf node. Therefore, it is
unnecessary to check for a c node.

(xii) Since this is a leaf node and f5(2) = 0 we now know for sure that node 5
is an a node.

(xiii) The rightmost leaf node is also checked for an a node.
(xiv) But it is not.

Until now, we have two possible matches:

1. node 1 matches c and node 4 matches a
2. node 4 matches c and node 5 matches a



www.manaraa.com

13 Different Search Strategies on Encrypted Data Compared 193

-

(vi) f2(2) = 4

(xii) f5(2) = 0 (xiv) f6(2) = 1

(viii) f4(2) = 0
(x) f4(3) = 0

(ii) f1(2) = 0
(iv) f1(3) = 0

(a) Unshared evaluation

=

-

(v) c2(2) = 3

(xi) c5(2) = 4 (xiii) c6(2) = 2

(vii) c4(2) = 0
(ix) c4(3) = 4

(i) c1(2) = 1
(iii) c1(3) = 4

(b) Client evaluation

+

-

(v) s2(2) = 1

(xi) s5(2) = 1 (xiii) s6(2) = 4

(vii) s4(2) = 0
(ix) s4(3) = 1

(i) s1(2) = 4
(iii) s1(3) = 1

(c) Server evaluation

Fig. 13.7. Evaluation process of the query //c/a using the same mapping function
and data encoding as in Fig. 13.6. The roman numbers indicate the sequence of
operations.



www.manaraa.com

194 R. Brinkman

It is sufficient to check the exact value of node 4 only. If this node is a c node
then solution 1 holds, if this node is an a node solution 2 holds. If it is neither
then there are no matches. The exact value of a node n can be found in two
different ways:

• Ask the server for the polynomial sn(x) and the polynomials of all its chil-

dren (let us name them s
(1)
n (x), . . . , s

(k)
n (x)). In the mean time calculate

cn(x) and its children c
(1)
n (x), . . . , c

(k)
n (x). The exact value can be calcu-

lated by dividing fn(x) by
∏k

i=1 f
(i)
n (x). The result will be a monomial

x − t where t is the node’s value.
• If fn(a) = 0 for some value a and for all children i of n, fi(a) 6= 0 then you

know that node n is a. Note that for recursive document type definitions
(such as our example) there is no guarantee that this method works.

13.3 Solutions Compared

Having seen three different ways to query encrypted data, one may ask which
one is the best. This is not easy to answer, since each has its own advantages
and disadvantages. It depends on the requirements which one is the most
appropriate.

13.3.1 Index-Based Approach

Advantages

The index-based solutions uses a relational database as back-end. Since rela-
tional databases have been around for quite some time, there exists a huge
theoretical background including all kinds of indexing mechanisms and even
its own relational algebra. Hacıgümüş takes advantage of this to create an
efficient solution, pushing as much of the workload to the server.

Disadvantages

This efficiency comes at a price, though. The storage cost doubles compared
to the plain text case. Apart from the encrypted data the hash values for each
searchable field are also stored. These hashes are almost as big as the original
values.

Another disadvantage is the fact that the server can link records together
without the cooperation of the client. Values that are equal in the plain text
domain are also equal in the encrypted domain. Although the opposite does
not hold, the server still learns which records are not the same. Therefore,
it can estimate the number of different values or it can join tables fairly
accurately.



www.manaraa.com

13 Different Search Strategies on Encrypted Data Compared 195

A more practical disadvantage is that the user should choose the hash map
in such a way that the intervals do not get too big or too small. The hash
map strongly depends on the distribution of the plain text values. When the
distribution changes drastically, the hash map should also be redesigned.

13.3.2 Search in the Encrypted Data

Advantages

The encryption method of Song et al. does not need a larger storage space
than in the plain text case.

When a word occurs multiple times, the encryptions are different, which
makes frequency analysis impossible.

Almost the whole workload is done at the server site. Only the encryption
of the keyword and a single hash operation are performed at the client. This
fact makes this strategy especially useful for lightweight devices like mobile
phones.

Disadvantages

Song’s strategy may be efficient when you only look at storage space, but
it is not when looking at computation time. For each query all the data are
searched linearly. Thus this strategy does not scale well. Brinkman et al. [8]
reduce the computation time from linear to logarithmic by using more struc-
tured (trees) data input. Unfortunately, this also increases the communication
from constant to logarithmic time. They also drop the requirement for fixed-
sized keywords, which is another disadvantage of the original scheme.

13.3.3 Using Secret Sharing

Advantages

The main advantage of the secret sharing strategy is its security. Since all the
data stored on the server are randomly generated, it is just worthless garbage
for an attacker. Even the same nodes are encrypted differently.

Another advantage is the efficient storage. Although knowledge about the
whole subtree is stored at each node, the storage remains similar in size to
the plain text.

Disadvantages

A disadvantage, though, is the communication costs. Each node that is being
traversed costs a round-trip communication (with very little data) between
the client and the server. Also the workload on the client is similar to the
workload on the server.



www.manaraa.com

196 R. Brinkman

References

1. H. Hacıgümüş, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Executing
SQL over encrypted data in the database service provider model. In SIGMOD
Conference, 2002.

2. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Efficient execution of aggregation
queries over encrypted relational databases. In Proc. of the 9th International
Conference on Database Systems for Advanced Applications, Jeju Island, Korea,
March 2004.

3. H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra. SSQL: Secure SQL in an insecure
environment. VLDB journal, 2006.

4. Hakan Hacıgümüş, Bala Iyer, and Sharad Mehrotra. Efficient execution of
aggregation queries over encrypted relational databases. In YoonJoon Lee,
Jianzhong Li, Kyu-Young Whang, and Doheon Lee, editors, Database Systems
for Advanced Applications: 9th International Conference, DASFAA 2004, vol-
ume LNCS 2973, pages 125–136, Jeju Island, Korea, March 2003. Springer Ver-
lag.

5. Josep Domingo-Ferrer and Jordi Herrera-Joancomart́ı. A privacy homomor-
phism allowing field operations on encrypted data. Jornades de Metemàtica
Discreta i Algoŕısmica, march 1998.

6. E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Balancing confidentiality and efficiency in untrusted relational
DBMSs. In Proc. of the 10th ACM Conference on Computer and Communica-
tions Security, pages 93–102, Washington, DC, USA, October 2003. ACM Press
New York, NY, USA.

7. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques
for searches on encrypted data. In IEEE Symposium on Security and Privacy,
pages 44–55, 2000.

8. R. Brinkman, L. Feng, J. M. Doumen, P. H. Hartel, and W. Jonker. Efficient tree
search in encrypted data. Information Systems Security Journal, 13(3):14–21,
July 2004.

9. B. Waters, D. Balfanz, G. Durfee, , and D. K. Smetters. Building an en-
crypted and searchable audit log. In Network and Distributed Security Sym-
posium (NDSS) ’04, San Diego, California, 2004.

10. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryp-
tion with keyword search. In Proceedings of Eurocrypt, pages 506–522, 2004.

11. R. Brinkman, J. M. Doumen, P. H. Hartel, and W. Jonker. Using secret sharing
for searching in encrypted data. In W. Jonker and M. Petković, editors, Secure
Data Management VLDB 2004 workshop, volume LNCS 3178, pages 18–27,
Toronto, Canada, August 2004. Springer-Verlag, Berlin.

12. R. Brinkman, B. Schoenmakers, J. M. Doumen, and W. Jonker. Experiments
with queries over encrypted data using secret sharing. In W. Jonker and
M. Petković, editors, Secure Data Management VLDB 2005 workshop, volume
LNCS 3674, pages 33–46, Trondheim, Norway, Sep 2005. Springer-Verlag, Berlin.


	13 Different Search Strategies on Encrypted Data Compared
	Richard Brinkman

